
Local Search Techniques for Computing Equilibria in
Two-Player General-Sum Strategic-Form Games

(Extended Abstract)
Sofia Ceppi

DEI, Politecnico di Milano,
Milano, Italy

ceppi@elet.polimi.it

Nicola Gatti
DEI, Politecnico di Milano,

Milano, Italy
ngatti@elet.polimi.it

Giorgio Patrini
DEI, Politecnico di Milano,

Milano, Italy
giorgio.patrini@mail.polimi.it

Marco Rocco
DEI, Politecnico di Milano,

Milano, Italy
marco1.rocco@mail.polimi.it

ABSTRACT
The computation of a Nash equilibrium in a game is a chal-
lenging problem in artificial intelligence. This is because the
computational time of the algorithms provided by the litera-
ture is, in the worst case, exponential in the size of the game.
To deal with this problem, it is common the resort to con-
cepts of approximate equilibrium. In this paper, we follow a
different route, presenting, to the best of our knowledge, the
first algorithm based on the combination of support enumer-
ation methods and local search techniques to find an exact
Nash equilibrium in two-player general-sum games and, in
the case no equilibrium is found within a given deadline, to
provide an approximate equilibrium. We design some di-
mensions for our algorithm and we experimentally evaluate
them with games that are unsolvable with the algorithms
known in the literature within a reasonable time. Our pre-
liminary results are promising, showing that our techniques
can allow one to solve hard games in a short time.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

General Terms
Algorithms

Keywords
Game theory (cooperative and non-cooperative)

1. INTRODUCTION
Non-cooperative game theory provides elegant models and

solution concepts for capturing settings in which rational
agents strategically interact [9]. Technically speaking, a

Cite as: K��� ����� .��	�T#�� ��� ?�
�#��	� �T#������� �	 .��,
E��"�� /�	����,�#
 ��������,F��
 /�
�� ��+��	��� ��������� �$?����
�	� @$ /���� �	� /$ E����	� �	� $ 5��� Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010)� ��	 ��� I��A� J�
�	A�� K���L��	�� K#A �	� ��	 ����$�� �"�
&MC&;� %M&M� .���	��� ?�	���� ��$
?��"����� © %M&M� �	���	����	�� F�#	�����	 ��� �#��	�
�#� ���	�� �	�
 #������	� �"���
� ����$����
��$����$ ��� ������ ��������$

game is a pair: the mechanism defines the rules (e.g., num-
ber of agents, available actions, outcomes), and the strategies
define the behavior of the agents. The central solution con-
cept is Nash equilibrium [3]. It prescribes strategies such
that no agent can gain more by deviating unilaterally from
them. Any game is proved to admit at least a Nash equilib-
rium, however its computation is a challenging problem also
with two agents. In [2] the authors show that computing a
Nash equilibrium in an n-player game is PPAD-complete. It
is not known whether or not P=PPAD. However, it is gen-
erally believed that the two classes are not equivalent and
that, in the worst case, computing a Nash equilibrium will
take time that is exponential in the size of the game [9]. In
this paper we focus on the problem of designing efficient al-
gorithms for solving two-player general-sum strategic-form
games with complete information.

2. STATE OF THE ART
Searching for a Nash equilibrium essentially requires the

resolution of a feasibility mathematical programming prob-
lem. The literature provides three solving algorithms for
two-player general-sum games: Lemke-Howson (LH) [4], Por-
ter-Nudelman-Shoham (PNS) [7], and Sandholm-Gilpin-Co-
nitzer (SGC) [8]. LH provides a linear complementarity
mathematical programming formulation and an algorithm
based on pivoting techniques [4]. PNS provides an algorithm
that enumerates all the agents’ supports and for each joint
support checks the existence of a Nash equilibrium by solv-
ing a linear feasibility problem [7]. SGC provides a mixed
integer linear mathematical programming formulation and
several methods to improve the computational efficiency [8].
Each of the above three algorithms outperforms the others
in some specific settings: PNS outperforms SGC and LH for
almost all the games generated by GAMUT [6]; LH outper-
forms PNS and SGC for games with medium-large support
equilibria (this class of games is developed in [8]); SGC out-
performs PNS and LH when one searches for an optimum
equilibrium. As shown in [1, 8], the instances of the most
game classes (with 150 actions per agent) are solved in a neg-
ligible time (< 1 s). However, there are some classes (e.g.,
Covariant, Graphical, and Polymatrix) whose instances are
hard to be solved with all the three algorithms. This is due

1469

1469-1470

to three reasons: the algorithms search for an equilibrium
by enumerating all the possible solutions in a static way, the
number of these rises exponentially in the number of agents’
actions, and, in the worst case, they must explore the whole
solution space.

3. OUR PROPOSAL
We propose, to the best of our knowledge, the first al-

gorithm based on the combination of support enumeration
methods and local search techniques [5]. We formulate the
problem of finding a Nash equilibrium as a combinatorial
optimization problem where the search space is the support
space and the function to be minimized is designed such that
its global minima correspond to Nash equilibria. Basically,
our algorithm works iteratively generating new solutions (ac-
cording to a topological representation of the support space)
and accepting those that improve the value of a given ob-
jective function. Since the objective function is generally
non-convex and presents multiple local optima, metaheuris-
tics are employed to escape from them and reach a global
optimum. We design the following dimensions for our algo-
rithm.

Objective functions. We design four different objective
functions f(⋅)s.

Irreducible infeasible set size. For a linear programming
problem, an irreducible infeasible set is an infeasible subset
of constraints and variable bounds that becomes feasible if
any single constraint or variable bound is removed. We de-
fine f as the size of the irreducible infeasible set The idea is
simple, the larger the IIS the lower the infeasibility measure
of the problem.

Inequality constraint violations. In the previous case, we
gave the same importance to equality and inequality con-
straints. Instead, in this case, we force the equality con-
straints to be satisfied and we measure the violations only
of the inequality constraints. The basic idea is that with
non-degenerate games the equality constraints constitute a
non singular linear equation set that, by definition, admits
a unique solution and can be easily solved. We define f as
the number of the violated inequality constraints.

Best well-supported ε-Nash. Given the agents’ joint sup-
port, we formulate the problem of computing the best well-
supported ε-Nash equilibrium as a linear programming prob-
lem. We define f as the value of ε.

Minimal regret. Given the agents’ joint support, we for-
mulate the problem of computing the strategy profile with
the minimal agents’ regret r as a linear programming prob-
lem. We define f as the value of r.

Heuristics. We design some heuristics.
Iterative improvement. Given a solution, neighbors are

repeatedly generated until a better solution is not found.
Then, the algorithm moves on this last solution. The gen-
eration of the neighbors can be accomplished in different
ways: best improvement (all the neighbors are generated in
lexicographic order and the best one, if better than the cur-
rent solution, is chosen as next solution), first improvement
with lexicographic generation (the neighbors are generated
in lexicographic order and the first generated solution, that
is better than the current one, is chosen as next solution),
first improvement with random generation (the neighbors
are generated randomly and the first generated solution,
that is better than the current one, is chosen as next so-
lution).

Metropolis. Given a solution s, its neighbors are explored
randomly and a solution s′ is always accepted if f(s′) < f(s)
and is accepted with a probability of exp(f(s)−f(s′)

t
), where

t is a parameter called temperature, if f(s) ≤ f(s′).
Metaheuristics. We design some metaheuristics. They

are used every time a local minimum is found until a given
temporal deadline is not expired.

Random restart. Every time a local minimum is reached,
the algorithm starts from a solution generated randomly.

Simulated annealing. It uses Metropolis forcing the tem-
perature to be a function of the iteration number.

Tabu search. We introduce a circular list containing the
last visited solutions. Whenever a solution is generated, we
check whether or not it is in the list. In the former case we
discard it.

4. EXPERIMENTAL EVALUATION
In our experimental analysis, we isolate hard instances

produced with GAMUT that are unsolvable with the above
three algorithms within a reasonable time (i.e., several hours)
and then we apply our algorithm to such instances evaluat-
ing the time needed for finding an equilibrium and, in the
cases no equilibrium is found within a given deadline, the
quality of the best solution found so far. Our preliminary
experimental results are promising: with the best configu-
ration of our algorithm, hard game instances are solved in
short time with high probability. In particular, the use of re-
gret based objective function allows one to solve games with
50 actions per player within 10 minutes with a probability
of ∼ 95%.

5. REFERENCES
[1] S. Ceppi, N. Gatti, and N. Basilico. Computing

Bayes-Nash equilibria through support enumeration
methods in Bayesian two-player strategic-form games.
In IAT, pages 541–548, Milan, Italy, 2009.

[2] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The
complexity of computing a Nash equilibrium. In STOC,
pages 71–78, Seattle, USA, 2006.

[3] D. Fudenberg and J. Tirole. Game Theory. The MIT
Press, Cambridge, USA, 1991.

[4] C. Lemke and J. Howson. Equilibrium points of
bimatrix games. SIAM J APPL MATH, 12(2):413–423,
1964.

[5] W. Michiels, E. Aarts, and J. Korst. Theoretical Aspects
of Local Search. Springer, Berlin, Germay, 2007.

[6] E. Nudelman, J. Wortman, K. Leyton-Brown, and
Y. Shoham. Run the GAMUT: A comprehensive
approach to evaluating game-theoretic algorithms. In
AAMAS, pages 880–887, New York, USA, 2004.

[7] R. Porter, E. Nudelman, and Y. Shoham. Simple search
methods for finding a Nash equilibrium. In AAAI,
pages 664–669, 2004.

[8] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer
programming methods for finding Nash equilibria. In
AAAI, pages 495–501, Pittsburgh, USA, 2005.

[9] Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game Theoretic and Logical Foundations.
Cambridge University Press, Cambridge, USA, 2008.

1470

